Начертательная геометрия Начертательная геометрия

Взаимное положение прямых и плоскостей

Пересечение прямой с плоскостью общего положения Задача на построение точки пересечения прямой с плоскостью общего положения является одной из самых часто решаемых на практике. Поэтому её называют первой позиционной задачей. Прежде чем рассмотреть алгоритм решения задачи в общем виде рассмотрим решение двух частных задач.

Проекции прямой, перпендикулярной плоскости При решении геометрических задач часто бывает необходимо строить перпендикуляры к плоскости. Это требует установления признаков, которые позволяли по чертежу судить о перпендикулярности прямой и плоскости в пространстве и, наоборот, строить на чертеже прямые и плоскости, перпендикулярные друг другу в пространстве.

Взаимно-параллельные плоскости Для параллельных плоскостей справедливо следующее утверждение: если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, эти плоскости параллельны друг другу.

Взаимное перпендикулярные прямые В связи с тем, что прямой угол между прямыми общего положения искажается на обеих плоскостях проекций, задачу на построение взаимно перпендикулярных прямых общего положения приходится сводить к задаче о перпендикулярности прямой и плоскости. При этом исходят из того, что две прямые взаимно перпендикулярны в том и только в том случае, если через каждую из них можно провести плоскость перпендикулярную к другой прямой.

Преобразование комплексного чертежа Решение многих геометрических задач на комплексных чертежах этих объектов часто усложняется из-за того, что заданные геометрические объекты расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искаженном виде. Поэтому для более простого решения задач прибегают к преобразованию комплексного чертежа, которое переводит интересующие нас прямые и плоские фигуры из общего положения относительно плоскостей проекций в частное (прямые и плоскости проецирующие и уровня).

Основные задачи, решаемые одной заменой плоскости проекций С помощью одной замены плоскости проекций решаются четыре основные типовые задачи: прямую общего положения преобразовать в прямую уровня; прямую уровня преобразовать в проецирующую прямую; плоскость общего положения преобразовать в проецирующую плоскость; проецирующую плоскость преобразовать в плоскость уровня.

Кривые линии Линии играют большую роль в науке и технике. Они позволяют установить и исследовать функциональную зависимость между различными величинами. С помощью линий удаётся решить многие научные и инженерные задачи, решение которых аналитическим путём часто приводит к использованию громоздкого математического аппарата. Кроме самостоятельного значения, линии широко используются при конструировании поверхностей различных технических форм.

Кривые линии на комплексном чертеже В начертательной геометрии кривые линии изучаются по их проекциям на комплексном чертеже. Положение точки, описывающей при своём движении некоторую кривую, определяется в любой момент движения двумя её проекциями. Поэтому в общем случае для полного графического задания кривой линии на комплексном чертеже необходимо задать две проекции этой линии (как правило, обе проекции являются кривыми линиями). В частном случае (когда кривая плоская) одна из проекций кривой может быть прямой линией.

В процессе проектирования и изготовления нового изделия инженерам часто приходится решать задачи, связанные с различными геометрическими объектами. Такие задачи делятся на метрические и позиционные. При решении метрических задач определяются различные геометрические величины: длины отрезков, углы, площади, объемы и т.п. Мы с вами уже встречались с подобными задачами. Так при рассмотрении третьей темы мы научились определять натуральную длину отрезка прямой методом прямоугольного треугольника. К метрическим задачам также относятся задачи на построение перпендикулярных прямых и плоскостей. При изучении данной темы мы научимся решать такие задачи.

Геометрические задачи, связанные с определением относительного расположения фигур в пространстве, относятся к позиционным. Такие задачи подразделяются на два типа. В задачах первого типа определяется взаимная принадлежность одного геометрического объекта другому (например, построить точку на прямой или на плоскости, построить прямую на плоскости и т.п.). В задачах второго типа находятся точки или линии пересечения геометрических объектов между собой. В процессе изучения данной темы мы научимся решать две основные позиционные задачи – нахождение точки пересечения прямой общего положения с плоскостью общего положения и построение линии пересечения двух плоскостей общего положения.

Проекции прямой, параллельной плоскости

Известно, что прямая параллельна плоскости, если в плоскости можно провести прямую, параллельную заданной прямой. Очевидно через точку пространства, не принадлежащую плоскости, можно провести бесчисленное множество прямых, параллельных данной плоскости. Все эти прямые будут лежать в плоскости, проходящей через заданную точку и параллельную заданной прямой. Поэтому для выбора единственного решения необходимо задать какое-нибудь дополнительное условие, например, чтобы искомая прямая была бы параллельна ещё и плоскости проекций.

Рассмотрим несколько примеров.

1. Через точку А провести прямую m, параллельную плоскости S, заданной пересекающимися прямыми a и b (рис.5.1).

Так как дополнительных условий не задано, для решения задачи можно провести любую прямую из множества прямых, проходящих через точку A и параллельных плоскости S. В частности, для построения проекций искомой прямой можно поступить следующим образом: проведём в плоскости S произвольную прямую l. Для этого через произвольно точку 11 проводим горизонтальную проекцию l1. Затем строим фронтальную проекцию l2 прямой l, принадлежащей плоскости S. Далее через проекции точки A проводим проекции прямой m, соответственно параллельные проекциям l1 и l2 .

Рис.5.1

2. Через заданную точку D провести плоскость q, параллельную прямой n (рис,5.2).

Искомую плоскость зададим двумя пересекающимися прямыми, одна из которых должна быть параллельна заданной прямой n, а другая прямая может быть произвольной прямой. Для этого через проекции точки D(D1, D2) проводим проекции прямой b1 и b2, соответственно параллельные одноименным проекциям n1 и n2. Затем через проекции точки D (D1, D2) в произвольном направлении проводим проекции прямой a (а1, а2). Построенная плоскость проходит через точку D и параллельна прямой n, т.к. она содержит прямую b, параллельную прямой n.

Рис.5.2

Иногда приходится отвечать на вопрос: параллельна ли данная прямая l заданной плоскости S ? Чтобы ответить на этот вопрос необходимо выяснить, возможно ли провести в плоскости S прямую, параллельную данной прямой. В случае положительного ответа – прямая l параллельна плоскости S, а если ответ отрицательный, тo l не параллельна плоскости


Вернуться на Главную