Двойные интегралы в полярных координатах Геометрические приложения двойных интегралов Вычисление объемов с помощью тройных интегралов Замена переменных в тройных интегралах Двойные интегралы в прямоугольной области

Кратные интегралы методы и примеры решений

Геометрические приложения поверхностных интегралов

С помощью поверхностных интегралов вычисляются

Площадь поверхности Пусть S является гладкой, кусочно-непрерывной поверхностью. Площадь поверхности определяется интегралом Если поверхность S задана параметрически с помощью вектора то площадь поверхности будет равна где D(u,v) − это область, в которой задана поверхность. Если поверхность S задана в явном виде функцией z(x,y), то площадь поверхности выражается формулой где D(x,y) − проекция поверхности S на плоскость xy. Объем тела, ограниченного замкнутой поверхностью Предположим, что тело ограничено некоторой гладкой, замкнутой поверхностью S. Тогда объем тела определяется по формуле

С точностью до 0,001 вычислить интеграл

Предел монотонной ограниченной последовательности Переходим к изучению вопроса о том, какими свойствами должна обладать последовательность, чтобы у неё существовал предел. Прежде чем сформулировать окончательный ответ, рассмотрим один простой и важный класс последовательностей, для которых этот вопрос решается легко.

Т.к. интегрирование производится в окрестности точки х=0, то можно воспользоваться для разложения подинтегральной функции формулой Маклорена.

  Разложение функции cosx имеет вид:

Зная разложение функции cosх легко найти функцию 1 – cosx:

 

В этой формуле суммирование производится по п от 1 до бесконечности, а в предыдущей – от 0 до бесконечности. Это – не ошибка, так получается в результате преобразования.

Теперь представим в виде ряда подинтегральное выражение.

 

Теперь представим наш интеграл в виде:

 

В следующем действии будет применена теорема о почленном интегрировании ряда. (Т.е. интеграл от суммы будет представлен в виде суммы интегралов членов ряда).

Геометрические приложения криволинейных интегралов Криволинейные интегралы имеют многочисленные приложения в математике, физике и прикладных расчетах. В частности, с их помощью вычисляются

Найти длину кривой при условии .

Вычислить длину астроиды .

Найти длину циклоиды, заданной в параметрическом виде вектором в интервале

Вычислить длину параболы в интервале .

Найти длину кардиоиды, заданной в полярных координатах уравнением

Найти площадь области, ограниченной гиперболой , осью Ox и вертикальными прямыми x = 1, x = 2

Найти объем тела, образованного вращением вокруг оси Ox области R, ограниченной кривой , и прямыми x = 0, x = , y = 0.

На главную